

Method Development and Validation for the Simultaneous Estimation of Doravirine, Lamivudine and Tenofovir Bulk and Pharmaceutical Dosageform

G. Indira Priyadarshini*, K. Harish

Assistant Professor, Department of Pharmaceutical Analysis, Hindu College of Pharmacy, Amaravathi Road, Guntur-522002, A.P., India.

Date of Submission: 25-10-2021

Date of Acceptance: 03-10-2021

ABSTRACT

A simple, precise, accurate, sensitive, reliable and cost effective Stability indicating RP-HPLC method was developed and validated for the the simultaneous estimation of the Lamivudine, Tenofovirand Doravirine in Api and Tablet dosage form. Chromatogram was run through Zorbax C18 150x4.6mm, 5m. Mobile phase containing 0.1% Formic acid and Acetonitrile in the ratio of 70:30 v/v was pumped through column at a flow rate of 1ml/min. Temperature was maintained at 30°C. Optimized wavelength for Lamivudine, Tenofovir and Doravirinewas260.0 nm.Retention time of Lamivudine, Tenofovir and Doravirine were found to be 2.383 min, 2.977 minand3.926 min respectively. The linearity was established over the concentration ranges of 20-100 µg/ml and 30-150 µg/ml with correlation coefficient%RSD of method precision for Doravirine, Lamivudine and Tenofovir were and found to be 1.6, 1.1 and 1.0 respectively. % recovery was obtained as 100.56%, 99.98% and 99.35% for Doravirine, Lamivudine and Tenofovir respectively. LOD values are obtained from regression equations of Doravirine, Lamivudine and Tenofovir.were 0.21 ppm, 0.64 ppm, 0.55 pmandLOQvalues are obtained from regression equations of Doravirine, Lamivudine and

Tenofovirwere0.65ppm,1.94ppm,1.67ppmrespectiv ely.PercentageassayofDoravirine, Lamivudine and Tenofovir was found to beObtainedwas 99.95%. 100.19% and 100.43% respectively.Doravirine, Lamivudine and Tenofovir were subjected to stress conditions like Acidic, Alkaline, Oxidation, Thermal and Photo degradation and results showed that Doravirine,Lamivudine,Tenofovir was more sensitive towards Acid degradation and The % degradation results were within the limits Hence the developed method can be successfully employed for the routine analysis of Doravirine,Lamivudine and,Tenofovir in bulk and pharmaceutical dosageform

KEYWORDS: Doravirine. Lamivudine, Tenofovir, RP-HPLC

I. INTRODUCTION

Doravirine ischemically3-chloro-5-({1-[(5-hydroxy-4-methyl-4H-1,2,4-triazol-3-yl)methyl]-2-oxo-4-(trifluoromethyl)- 1,2-dihydropyridin-3yl}oxy)benzonitrile .And its molecular formula C17H11ClF3N5O3,Molecular Weight 425.749

Doravirine has been used in trials studying the treatment of HIV-1, HIV-1 Infection, Renal Impairment, and Human Immunodeficiency Virus (HIV) Infection.

Lamivudin is chemically4-amino-1-[(2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,2-

dihydropyrimidin- 2-onemolecular formula is C8H11N3O3Sits molecular weight is 229.256 A reverse transcriptase inhibitor and zalcitabine analog in which a sulfur atom replaces the 3' carbon of the pentose ring. It is used to treat Human Immunodeficiency Virus Type 1 (HIV-1) and hepatitis B (HBV)

Tenofovir is chemically ({[(2R)-1-(6-amino-9Hpuryl)propanyl]oxy}methyl) phosphonicacid Its molecular formula is C9H14N5O4P and its molecular weight is 287.2123 Tenofovir is in a class of medications called nucleoside reverse transcriptase inhibitors (NRTIs). It works by decreasing the amount of HIV and HBV in the blood. Tenofovir may not prevent the spread of hepatitis B to otherpeople

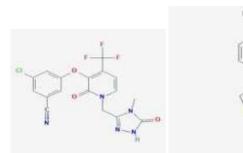


Image 1: Structure of Doravirine

Image2:Structureof Lamivudine

Image3: Structure of Tenofovir,

Doravirine. Lamivudine, and, Tenofovir, were introduced into the market in combined dosage form (Delstrigo) it is a fixed-dose combination antiretroviral medication used to treat HIV/AIDS doravirine, Lamivudine, and Tenofovir. Doravirine belongs to a class of drugs known as non- nucleoside reverse transcriptase inhibitors (NNRTIs). Lamivudine is called a nucleoside reverse transcriptase inhibitor and Tenofovir is called a nucleotide reverse transcriptase inhibitor. Lamivudine and Tenofovirare often called NRTIs. Doravirine/ Lamivudine/ Tenofovir is not a cure for HIV infection. To decrease your risk of spreading HIV disease toothersThe literature review reveals that few analytical methods have been reported for the simultaneous estimation Doravirine, Lamivudine, and Tenofovir_of in bulk, pharmaceutical dosage forms and in biological samples. They are UV Spectrophotometric, HPLC and LC-MS/MS methods. Few analytical methods are reported for the Doravirine, Lamivudine, and Tenofovir in bulk and pharmaceutical formulations. They are UV Spectrophotometric, HPLC and UPLC methods. But still there is a need for the development of more sensitive and cost effective analytical method for simultaneous estimation Doravirine, Lamivudine, and Tenofovir of Hence an attempt has been made to develop a simple, precise, accurate, sensitive, reliable and cost effective stability indicating RP- HPLC method for the simultaneous estimation of Doravirine,

Lamivudine, and Tenofovir in bulk and pharmaceutical dosage form.

II. MATERIALS AND METHODS

Chemicals and reagents

Drug Samples\Were obtained from Spectrum pharma research solutions pvt.ltd

Chemicals and Solvents Used : Water –HPLC grade Acetonitrile - HPLC grade, Triethyl amine– AR grade Potassium dihydrogenortho phosphate – AR grade, Orthophosphoric acid – Argrade, All the above chemicals and solvents are From Ranchem

Instrumentation

- Electronics Balance -Denver
- BVK enterprises, India, P^H meter
- Waters HPLC 2695 series with quaternary pumps, Photo Diode array detector and auto sampler integrated with empower software
- BVK enterprises, Ultrasonicator.
- Lab India UV double beam spectrophotometer with UV win5

Selection of wavelength

UV spectrum of 10μ g/ml Doravirine and 10μ g/ml of Lamivudine and 10μ g/ml of Tenofovir in Methanol were recorded by scanning in the range of 200nm to 400nm against blank separately. Then the suitable wavelength for the detection of Doravirine, Lamivudine and Tenofovir was selected as 259 nm by overlapping the spectrum of

drugs. At this wavelength of the drugs showed good absorbance.

Chromatographic Condition

The chromatographic separation of Doravirine. Lamivudine, Tenofovir, was performed by using a Zorbax C_{18} 150x4.6mm, 5m. Mobile phase containing 0.1% Formic acid and

Acetonitrile in the ratio of 70:30 v/v was pumped through column at a flow rate of 1ml/min. Temperature was maintained at 30°C. Detection of wavelength was carried out at 259 nm. The retention time of Doravirine, Lamivudine, Tenofovir was found to be 2.650min,3.191min and 4.123 min.

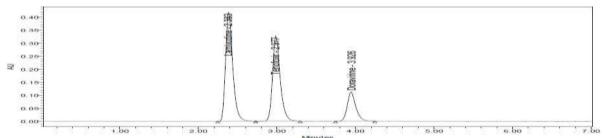


Image 4: Chromatogram of Doravirine. Lamivudine, Tenofovir Standard

Preparation of Standard Solution

Accurately weighed 12.5mg of Doravirine, 37.5 mg of Lamivudine and 37.5mg of Tenofovir and transferred to three 25ml volumetric flasks separately 10ml of Diluent was added to flasks and sonicated for 20mins. Flasks were made up Diluent and labeled as Standard stock solution 1, 2 and 3. (Doravirine 250ppm, Lamivudine 750ppm&Tenofovir750ppm).

Preparation of Sample Solution

5 tablets were weighed and calculate the average weight of each tablet then the weight equivalent to 1 tablet was transferred into a 100 ml volumetric flask, 25ml of diluent added and sonicated for 50min, further the volume made up with diluent and filtered. (Doravirine 1000ppm, Lamivudine 3000ppm&Tenofovir3000ppm)

III. RESULTSAND DISCUSSION Method validation

The developed method was validated with respect to system suitability, specificity, linearity, precision, accuracy, limit of detection, limit of quantification and robustness in accordance with the ICH Q2 (R1)guidelines.

System suitability

System-suitability tests are an integral part of method development and were used to ensure adequate performance of the chromatographic system. Retention time (RT), number of theoretical plates (N), tailing factor (T), and peak asymmetry (AS), resolution (RS) were evaluated. The results are shown in Table1

Property	Doravirine	Lamivudine	Tenofovir	Acceptance Criteria
Retention-time	3.926	2.383	2.977	-
(R t)				
Resolution	4.9	4.9	4.9	NLT 2.0
Tailing factor (T)	1.22	1.29	1.27	NMT 2.0
Theoreticalplates	6431	3247	4633	NLT 2000
(N)				

data it was found that all the system suitability parameters for developed method were within the limit

Specificity

Specificity is the ability to assess unequivocally the analyte in the presence of components which may be expected to be present. It was found that there is no interference of any blank peaks with the drugs of the analysis concern. Hence method was specific

Linearity

The linearity of an analytical method is its ability to elicit test results which are directly proportional to the concentration of analyte in the

sample. Standard solution of Doravirine. Lamivudine, Tenofovir were prepared in such a way that the final concentration of Doravirine. Lamivudine, Tenofovir is in the range of 20-100 $\mu g/ml$

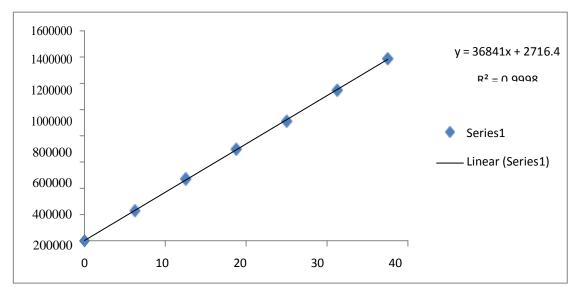
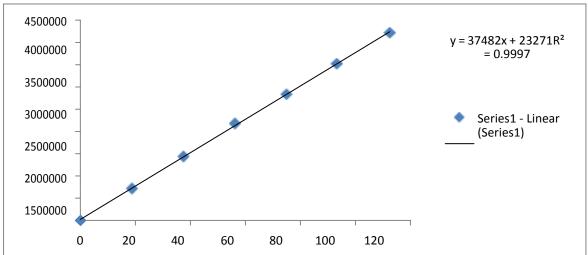
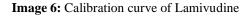
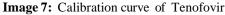
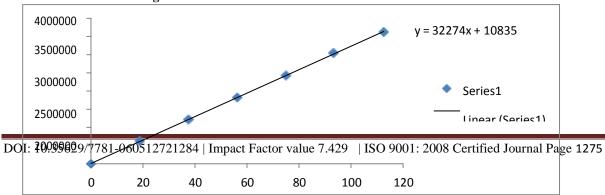






Image 5: Calibration curve of Dorarvine

The correlation co-efficient of Dorarviine. Lamivudine and Tenofovir were found to be 0.999 for all the threedrugs which were in the acceptance limit. Hence the proposed method was linear.

Precision

From a single volumetric flask of working standard solution six injections were given and the

obtained areas were mentioned above. Average area, standard deviation and % RSD were calculated for three drugs and obtained as 1.6%, 1.1% and 1.0% respectively for Doravirine, Lamivudine and Tenofovir. As the limit of Precision was less than "2" the system precision was passed in this method.

S.NO	Area of Doravirine.	Area of Lamivudine	Area of Tenofovir
1.	895372	2787576	2335711
2.	902124	2787410	2358731
3.	909957	2758102	2343435
4.	882637	2775102	2291171
5.	890792	2783950	2339936
6.	899430	2746886	2368458
Mean	896719	2773171	2339574
S.D	9455.7	17018.5	26736.1
%RSD	1.1	0.8	1.0

Multiple sampling from a sample stock solution was done and six working sample solutions of same concentrations were prepared, each injection from each working sample solution was given on the next day of the sample preparation and obtained areas were mentioned in the above table. Average area, standard deviation and % RSD were calculated for three drugs and obtained as 1.1%, 0.8% and 1.0% respectively for Doravirine, Lamivudine and Tenofovir. As the limit of Precision was less than "2" the system precision was passed in this method.

Accuracy

The accuracy of an analytical method is the closeness of test results obtained by that method to the true value. Accuracy may often express as percent recovery by the assay of known added amounts of analyte. Accuracy of the developed method was confirmed by doing recovery study as per ICH guideline at three different concentration levels 50%, 100%, 150% and the Values were measured. This performance was done in triplicate. The results were shown in Table.

% Level	AmountSpiked (µg/mL)	Amount recovered (μg/mL)	% Recovery	Mean %Recovery
50%	12.5	12.67	101.43	
5070	12.5	12.610	100.89	
	12.5	12.59	100.76	
100%	25	25.097	100.39	100.56%
100 /0	25	25.033	100.13	
	25	25.106	100.43	
150%	37.5	37.185	99.16	
	37.5	37.762	100.70	
	37.5	37.916	101.11	

Table 3: Accuracy table of Doravirine.

Table 4 : Accuracy table of Lamivudine

% Level	AmountSpiked (µg/mL)	Amount recovered (μg/mL)	% Recovery	Mean %Recovery
50%	37.5	37.384	99.69	
	37.5	37.362	99.63	
	37.5	37.557	100.15	
100%	75	74.948	99.93	99.98%
100%	75	75.317	100.42	

	75	75.137	100.18
150%	112.5	113.449	100.84
130 /0	112.5	110.969	98.64
	112.5	112.859	100.32

Table 5 : Accuracy table of Tenofovir

75 74.164 98.89 75 74.106 98.81 112.5 112.512 100.01	% Level	AmountSpiked (µg/mL)	Amount recovered (μg/mL)	% Recovery	Mean %Recovery
37.5 37.471 99.92 37.5 37.498 99.99 100% 75 74.556 99.41 75 74.164 98.89 75 74.106 98.81 150% 112.5 112.512 100.01	50%	37.5	37.328	99.54	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5070	37.5	37.471	99.92	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		37.5	37.498	99.99	
75 74.164 98.89 75 74.106 98.81 150% 112.5 112.512 100.01 112.5 110.409 98.14	100%	75	74.556	99.41	99.35%
112.5 112.512 100.01 112.5 110.409 98.14	10070	75	74.164	98.89	
150% 112.5 110.409 98.14		75	74.106	98.81	_
112.5 110.409 98.14	150%	112.5	112.512	100.01	
112.5 111.859 99.43	20070	112.5	110.409	98.14	
		112.5	111.859	99.43	

Three levels of Accuracy sample were prepared by standard addition method. Triplicate injections were given for each level of accuracy and mean %Recovery was obtained as 100.56%, 99.98% and 99.35% for and Doravirine, Lamivudine and Tenofovir. Respectively.

Limit of detection and Limit of quantification (LOD & LOQ)

Detection limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be detected but not necessarily quantitated, under the stated experimental conditions. Quantification limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be quantitatively determined with suitable precision and accuracy. LOD and LOQ of Doravirine, Lamivudine and Tenofovir were determined based on signal-tonoise ratio.

The S/N ratio value for LOD solution shall be 3 and for LOQ solution shall be 10. The S/N ratio values for LOD and LOQ of Doravirine, found to be 4.054&4.099, Lamivudine found to be 2.398&2.418 and Tenofovir were found to be 2.947&2.978 for respectively. The results obtained were within the limit, which showed that the method was sensitive

Robustness

The robustness of the proposed method was determined by analysis of aliquots from

homogenous lots by differing physical parameters like flow rate (± 0.1 ml/min), mobile phase ratio

 $(\pm 10\%)$. The results were shown in Table

S.No	Condition	%RSD of Doravirine.	%RSD of Lamivudine	%RSDof Tenofovir
1	Flow rate (-) 0.9ml/min	1.5	1.3	1.0
2	Flow rate (+) 1.1ml/min	0.7	1.2	0.8
3	Mobile phase (-) 55W:45M	1.3	1.5	1.4
4	Mobile phase (+) 45W:55M	0.5	1.0	1.8
5	Temperature (-) 25°C	0.2	0.8	1.4
6		1.5	0.9	1.1

	1 . C . D	x · · · · · · · · · · · · · · · · · · ·
Table 6: Robustness	data for Doravirine,	Lamivudine and Tenofovir

Results for actual flow rate and Mobile phase composition have been considered from Accuracy standard. The Retention time, USP plate count, USP tailing factor obtained for change of flow rate, variation in mobile phase were found to be within the limit. Hencethe method was robust.

Assay: Assay was performed to determine the content of Dorarviine. Lamivudine, Tenofovir in combined dosage form. The % assay should be within range of 98-102%. The % assay of Doravirine, Lamivudine and Tenofovir were found to be 99.95&100.19&100.43

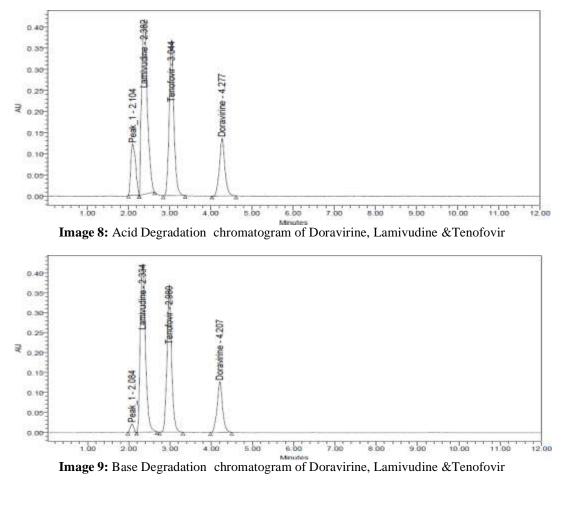
FORCED DEGRADATION STUDIES

The International Conference on Harmonization (ICH) guidelines entitled stability testing of new drug substances and products requires that stress testing be carried out to elucidate the inherent stability characteristics of the active substance. The specificity of the method was demonstrated through forced degradation studies conducted on the sample using acid, alkaline, oxidative, thermal and photolytic degradations. The sample was exposed to these conditions and the percentage degradation was calculated

S.NO	Degradation Condition	Area	% Area Recovery	% Drug Degraded
1	Acid	862645	94.31	5.69
2	Alkali	870138	95.13	4.87
3	Oxidation	882060	96.43	3.57

Table 7 : Degradation Data of Doravirine

4	Thermal	894310	97.77	2.23	
5	UV	896479	98.01	1.99	
6	Water				
		908160	99.29	0.71	


Table 8 : Degradation Data of Lamivudine

S.NO	Degradation Condition	Area	% Area Recovery	% Drug Degraded
1	Acid	2656715	94.68	5.32
2	Alkali	2679921	95.51	4.49
3	Oxidation	2700114	96.23	3.77
4	Thermal	2727901	97.22	2.78
5	UV	2767856	98.64	1.36
6	Water	2786005	99.29	0.71

Table 9: Degradation Data of Tenofovir

S.NO	Degradation Condition	Area	% Area Recovery	% Drug Degraded
1	Acid	2282531	94.83	5.17
2	Alkali	2302391	95.65	4.35
3	Oxidation	2347091	97.51	2.49
4	Thermal	2356755	97.91	2.09
5	UV	2375068	98.67	1.33
6	Water	2389070	99.25	0.75

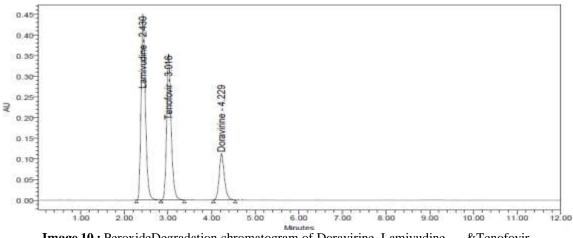



Image 10 : PeroxideDegradation chromatogram of Doravirine, Lamivudine & Tenofovir

Results for Stability studies of Doravirine, Lamivudine and Tenofovir

The results showed that Doravirine, Lamivudine andTenofovirwasmore sensitive towards acid degradation Degradation of drug up to 10% is

generally accepted. The % degradation results of Doravirine, Lamivudine and Tenofovir were with in limits.

IV. CONCLUSION

The developed RP-HPLC method was simple, precise, accurate, sensitive, reliable and cost effective for the simultaneous estimation of Doravirine, Lamivudine andTenofovir in bulk and pharmaceutical dosage form. The developed method was stability indicating and can separate degradants. Therefore this RP-HPLC method can be used for the routine analysis of these drugs in bulk, pharmaceutical formulations and also for stability studies in research institutions, quality control department in industries, testinglaboratories

REFERENCES

- [1]. R.GChatwal, AnandK.S.Highperformanceliq uidchromatography.Instrumental
- [2]. methods of chemical analysis, 5thed; Himalaya publishers: Mumbai, 2010;2.570-2.629.
- [3]. B. K Sharma, High performance liquid chromatography. Instrumental methods of chemical analysis, 24thed; Goel publishers: Meerut, 2005;295-300.
- [4]. W.M. Dong HPLC Instrumentation and trends. Modern HPLC for practicing scientists. USA. 2006;5-10,78-110.
- [5]. Skoog, DM West, FJ Holler, Fundamentals of Analytical Chemistry, 7th edition, Saunders College Publishing, Philadelphia, 1992,P.1-3.
- [6]. K. A Corners. Textbook of Pharmaceutical Analysis, A Wiley- inter science Publication, 1st edition1967, P.475-478..
- [7]. A.V Kasture., Wadodkar S.G., Mahadik K.R., More H.N. Textbook of Pharmaceutical Analysis – II, Published by NiraliPrakashan, 13th edition,2005
- [8]. A.H. Beckett and Stanlake J.B. Practical Pharmaceutical Chemistry, Part 2, CBS Publishers and Distributors; 4th edition.2002;P.157-174.
- [9]. R.L Snyder, kirklannd J.J, Glaijch L.J. Practical HPLC method development, 2nded; New York, 30-100(1997);
- A. Satinder, Dong M.W, Method development and validation.Pharmaceutical analysis by HPLC,15thed; Newyork, 16-70(2005);
- [10]. M.E Swartz, Ira krull, Analytical method development and validation, 1sted; Marcel

Dekker, NewYork, 17-80(2009);

- [11]. International Conference on Harmonisation.
 Q1A (R2) ,Stability testing of New Drug SubstancesandProducts.,(2003);
- [12]. Indian Pharmacopoeia, Ministry of Health & Family Welfare, Government of India, New Delhi(1996);
- [13]. https://www.drugbank.ca/drugs/DB12301
- [14]. https://www.drugbank.ca/drugs/DB00709
- [15]. https://www.drugbank.ca/drugs/DB00300
- Johnson, Margaret MDa; et al. Switching to Doravirine, Lamivudine, TenofovirDisoproxil Fumarate (DOR/3TC/TDF) Maintains HIV-1 VirologicSuppression. Journal Acquired Immuner Deficiency Syndrome. 81(4);2019;463–472.
- [17]. Orkin C1,2, Squires KE3, Molina JM4 et al. Doravirine, Lamivudine, Tenofovir Disoproxil Fumarate Non-inferior is to Efavirenz, Emtricitabine, Tenofovir Disoproxi lFumarate in Treatment-naive Adults With Immunodeficiency Virus-1 Human Infection. National Library of Medicine National Institutes of Health.68(4);2019;535-544.
- [18]. Kaushal.C, Srivatsava.B, A Process of Method Development: A Chromatographic Approach. J Chem Pharm Res, Vol.2, Issue 2, 519-545, (2010)
- [19]. Ashok Kumar, Lalith Kishore, navpreetKaur ,Anroop Nair. Method Development and Validation for Pharmaceutical Analysis. International PharmaceuticaSciencia, Vol 2, Issue 3, Jul-Sep(2012)
- [20]. British Pharmacopoeia, The Stationary Office, London(2005);
- [21]. The United States Pharmacopoeia- the National Formulary, United States Pharmacopoeial convention, Rockville(2007); A. Satinder, Dong M.W, Method development and validation.Pharmaceutical analysis by HPLC,15thed; Newyork, 16-70(2005);
- [22]. M.E Swartz, Ira krull, Analytical method development and validation, 1sted; Marcel Dekker, NewYork,17-80(2009);
- [23]. International Conference on Harmonisation.
 Q1A (R2) ,Stability testing of New Drug SubstancesandProducts.,(2003);
- [24]. Indian Pharmacopoeia, Ministry of Health & Family Welfare, Government of India, New Delhi(1996);
- [25]. https://www.drugbank.ca/drugs/DB12301

- [26]. https://www.drugbank.ca/drugs/DB00709
- [27]. https://www.drugbank.ca/drugs/DB00300
- [28]. Johnson, Margaret MDa; et al. Switching to Doravirine,Lamivudine,TenofovirDisoproxil Fumarate (DOR/3TC/TDF) Maintains HIV-1 VirologicSuppression.Journal Acquired Immuner Deficiency Syndrome.81(4);2019;463–472.
- [29]. Orkin C1,2, Squires KE3, Molina JM4 et al. Doravirine, Lamivudine, Tenofovir Disoproxil Fumarate is Non-inferior to Efavirenz, Emtricitabine, Tenofovir Disoproxi lFumarate in Treatment-naive Adults With Human Immunodeficiency Virus-1 Infection. National Library of Medicine National Institutes of Health.68(4);2019;535-544.
- [30]. Kaushal.C, Srivatsava.B, A Process of

Method Development: A Chromatographic Approach. J Chem Pharm Res, Vol.2, Issue 2, 519-545, (2010)

- [31]. Ashok Kumar, Lalith Kishore, navpreetKaur ,Anroop Nair. Method Development and Validation for Pharmaceutical Analysis. International PharmaceuticaSciencia, Vol 2, Issue 3, Jul-Sep(2012)
- [32]. British Pharmacopoeia, The Stationary Office, London(2005);
- [33]. The United States Pharmacopoeia- the National Formulary, United States Pharmacopoeial convention, Rockville(2007);